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ABSTRACT 

 

For my Masters thesis, I analyze the management of Spotted Wing Drosophila (SWD) 

in Michigan blueberry using a dynamic structural econometric model.  The Spotted 

Wing Drosophila (SWD) is a vinegar fly of East Asian origin that can cause damage to 

many fruit crops. I develop a dynamic structural model to study the SWD management 

decisions of growers of Michigan highbush blueberry regarding fly and larva 

monitoring and insecticide application. I apply my dynamic structural econometric 

model to a detailed data set I have collected and constructed of daily decisions of 

blueberry growers in Michigan. 



iii 

 

BIOGRAPHICAL SKETCH 

 

Shuo Yu was born and raised in Beijing, China.  She spent most of her childhood with 

her grandparents in the rural area of Beijing, where she developed an innate affection 

for agricultural economics.  In college, she pursued a double major in International 

Trade and Economics and in Accounting at the University of International Business and 

Economics in Beijing.  As an undergraduate research assistant, she wrote a paper on the 

“Effect of Outward Foreign Direct Investment (FDI) from China on the Rate of 

Technical Progress of Host Countries”, for a project funded by China’s Ministry of 

Commerce.  She won a University-level Outstanding Project Award for her project on 

“Prediction & Analysis of Alibaba Online Sales during Shopping Festival”; and she 

finished seventh in the Economics and Trade Case Analysis Team Competition.  After 

graduating with a first place ranking out of the 175 students in her undergraduate 

program in 2017, Shuo came to Cornell University to pursue her M.S. degree in Applied 

Economics and Management with a major concentration in Food and Agricultural 

Economics and a minor concentration in Environmental, Energy and Resource 

Economics. Shuo is interested in applying frontier methodologies to analyze 

fundamental issues in agricultural and resource economics, and to address sustainable 

agriculture issues in emerging developing countries. 



iv 

 

ACKNOWLEDGMENTS 

 

First and foremost, I would like to express my very great appreciation to my 

committee chair, Professor Miguel I. Gómez, for his invaluable support, encouragement, 

and mentorship. He is gentle and intelligent, and has been a tremendous advisor, 

providing me with a great topic, insightful comments, and financial support for my 

thesis; and giving me the opportunity to travel to Michigan to interview blueberry 

growers and to gather data and information about the decision-making of blueberry 

growers and about Spotted Wing Drosophila (SWD) management.  

Secondly but as importantly, I wish to acknowledge all the informative and 

fantastic advice provided by Professor C.-Y. Cynthia Lin Lawell, the other member of 

my committee. Had it not been for her help and effort, I could not have finished this 

thesis. Taking her Ph.D. class as a Masters student in Spring Semester 2018 helped me 

to learn about the foundations of structural models and to crystalize the whole method 

used in my thesis. I am particularly grateful for her support in my life not only as my 

professor but also as my spiritual mentor. 

I am grateful to Professor Rufus Isaacs and Philip Funning for hosting my visit 

to Michigan to interview blueberry growers and to gather data and information about 

the decision-making of blueberry growers and about SWD management, and for their 

assistance in the data collection.  

Additionally, I would also like to thank Xiaoli Fan, Houtian Ge, George Judge, 

Larry Karp, Dingyi Li, Jie Li, Jeffrey Perloff, Gabriela Quinlan, Logan Rowe, Louis 

Sears, Shuyang Si, Calum Turvey, Thomas Wood, Tong Wu, Adeline Yeh, Saleh 

Zakerinia, and Yajun (Angie) Zhang for detailed and helpful comments.   

Last but not the least, I am grateful to Bob Carini (Carini Farms), Shelly 

Hartmann (True Blue Farms), Mark Longstroth (Michigan State University Extension 



v 

 

Educator), and Carlos Garcia-Salazar (Michigan State University Extension Educator) 

for providing detailed insights and information SWD decision-making in blueberry 

farming. 



vi 

 

TABLE OF CONTENTS 

 

CHAPTER 1 INTRODUCTION .................................................................................... 1 

CHAPTER 2 LITERATURE REVIEW ......................................................................... 3 

2.1. SWD Management ........................................................................................... 3 

2.2. Dynamic Structural Model ............................................................................... 4 

CHAPTER 3 EMPERICAL APPROACH ..................................................................... 5 

3.1. Background ...................................................................................................... 5 

3.1.1. SWD IPM Program in Michigan Blueberry ............................................. 5 

3.1.2. The Highbush Blueberry Market/Pricing Structure in Michigan ............. 7 

3.1.3. Different Blueberry Cultivars ................................................................. 10 

3.2. Intuition and Tradeoffs .................................................................................. 10 

3.3. Data ................................................................................................................ 12 

3.4. Empirical Strategies ....................................................................................... 16 

3.4.1. Assumptions ........................................................................................... 16 

3.4.2. Choice Variables .................................................................................... 17 

3.4.3. Observable State Variables ..................................................................... 18 

3.4.4. Empirical Strategy for MI 2016 Data ..................................................... 27 

3.4.5. Empirical Strategy for MI 2018 Data ..................................................... 31 

CHAPTER 4 ECONOMETRIC ESTIMATION APPROACH ................................... 35 

4.1. Estimation Approach for 2016 Model ........................................................... 35 

4.1.1. Estimating Continuation Value by Backward Iteration .......................... 35 

4.1.2. Estimating Parameters with Finite Horizon DP Nested in MLE ............ 36 

4.1.3. Estimating Standard Errors by Analytical Derivation ............................ 37 

4.2. Estimation Approach for 2018 Model ........................................................... 37 

4.2.1. Estimating Coefficients Using EM Algorithm ....................................... 37 



vii 

 

4.2.2. Estimating Standard Errors via Bootstrap .............................................. 39 

CHAPTER 5 RESULTS ............................................................................................... 40 

CHAPTER 6 CONCLUSION ...................................................................................... 42 

REFERENCES ............................................................................................................... 1 

APPENDIX I ANALYTICAL STANDARD ERROR DERIVATION ........................ 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

LIST OF FIGURES 

 

Figure 1 Blueberry Harvest Dates at South Haven ........................................................ 8 

Figure 2 2016 Unit Blueberry Price Originated in Michigan ......................................... 8 

Figure 3 Monitoring Data of Grower 1 in MI 2016 Data ............................................. 22 

Figure 4 Monitoring Data of Grower 2 in MI 2016 Data ............................................. 23 

Figure 5 Monitoring Data of Grower 1 Bluecrop Cultivar in MI 2018 Data ............... 23 

Figure 6 Monitoring Data of Grower 1 Elliott Cultivar in MI 2018 Data .................... 24 

 

file:///C:/Users/shuoy/OneDrive/Desktop/Shuo_Yu_project48_Thesis_Draft3_190806.docx%23_Toc16026168


ix 

 

LIST OF TABLES 

 

Table 1 2016 Michigan Highbush Blueberry Data Descriptions and Sources ............. 13 

Table 2 2018 Michigan Highbush Blueberry Data Descriptions and Sources ............. 14 

Table 3 Descriptive Statistics of Main Variables for 2016 Data .................................. 15 

Table 4 Descriptive Statistics of Main Variables for 2018 Data .................................. 15 

Table 5 Summary of Discretized Monitoring Data (2016 MI) ..................................... 24 

Table 6 Summary of Discretized Female Flies Monitoring Data (2018 MI) ............... 25 

Table 7 Summary of Discretized Male Flies Monitoring Data (2018 MI) ................... 25 

Table 8 Preliminary Results for 2016 Model ............................................................... 41 

 



x 

 

LIST OF ABBREVIATIONS 

 

Abbreviation (Alphabetical) Explanation 

AM Adaptive Management 

BSSM Bayesian State-Space Modeling 

DP Dynamic Programming 

EM Algorithm Expectation Maximization Algorithm 

MI Michigan State 

MLE Maximum Likelihood Estimation 

IPM Integrated Pest Management 

POMDP Partially Observed Markov Decision 

Process 

SWD Spotted Wing Drosophila 

 

 

  



1 

 

 

 

 

CHAPTER 1 

INTRODUCTION 

 

The Spotted Wing Drosophila (SWD) is a vinegar fly of East Asian origin that 

can cause damage to many fruit crops. While most Drosophila species are considered 

harmless or nuisance pests because they are only attracted to spoiled and overripe fruit, 

SWD exhibits a strong preference for ripe or ripening fruit that has market value (Asplen 

et al., 2015; Cini et al., 2012).  

Given the zero tolerance for larvae in fruit, it is important that growers and 

processors bring multiple approaches to bear on this pest, to increase the likelihood that 

fruit are free of contamination. This currently involves combining cultural controls 

including fruit cooling, fly and larva monitoring, with conventional chemical control. 

In combination these can help growers and processors meet the market demands (Isaacs 

et al., 2015). 

Incorporating fly and larva monitoring with chemical control is one of the most 

recommended method for Michigan blueberry growers currently. However, the existing 

literatures only recommend the starting point and time interval between sprays vaguely.  

To fill this gap of the literature, we develop and estimate a dynamic structural 

model to study the optimal integrated pest management (IPM) timing of SWD 

management in Michigan highbush blueberry in a single growing season. In particular, 

we would like to find out when and which type of insecticide to apply conditional on 

the SWD larva and adult fly monitoring states, aiming to maximize the entire stream of 

present discounted payoffs in a finite horizon setup. To demonstrate the best timing 
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decision of spraying, we also include other decisions made by farmers that will interact 

with insecticide application in our model, which are the timing decision of monitoring 

and harvest. One nuance that can be checked by this model is whether the farmers make 

decisions in consideration of insecticide resistance and sustainability in the long run. 

Our research questions include the following. In the context of SWD 

management, what is the best timing strategy to apply insecticide and which insecticide 

to use conditional on the monitoring information? Do growers worry about the potential 

for developing insecticide resistance?  

We will use the structural model to determine whether the farmers are making 

dynamically optimal decisions or are discounting the future too much by changing 

different discount factor values and testing for the predictability of the model.  We will 

use parameters estimated from our structural model to conduct counterfactual analysis. 

In an extension to our dynamic structural model, we allow for unobserved 

heterogeneity, which enables us to estimate the distribution of unobserved susceptibility 

as well as the effects of varietal susceptibility on payoffs. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1.SWD Management 

Since the detection of the invasive SWD in 2008, quite a few biological models 

came out regarding its biology characteristics and population development (for instance, 

Hamby, et al., 2016). 

The threat from SWD on blueberries is mainly caused by larval feeding, 

resulting in the degradation of fruits, since SWD lay its eggs inside ripening fruits, 

puncturing the fruit’s skin with its unique saw-like ovipositor. In addition, the 

puncturing of the fruit skin also provides a gateway for secondary infections with 

bacteria and fungi pathogens or additional pests (Atallah et al., 2015; Haye et al., 2016). 

Although integrated IPM program of SWD are being developed around the 

world, including chemical, cultural, and biological control, current SWD management 

strategies mainly consist of preventive broad-spectrum insecticide sprays (Haye et al., 

2016; Van Timmeren and Isaacs, 2013).  

In recent MSU trials, several different kinds of registered insecticides have 

shown excellent control against SWD which fall into four categories, organophosphate, 

pyrethroid, diamide and spinosyn insecticides. Different insecticides present divergence 

in efficiency and application costs consisting of labor cost and material cost. And 

rotation in insecticides is useful in resistance management. Monitoring of SWD larva 

and adult flies are becoming prevailing to be incorporated with insecticide application 

in order to minimize the damage from both fruit infection and overuse of insecticide 

that may increase insecticide resistance and harm workers and consumers’ health. 

Currently, monitoring of SWD activity is based on sampling fruit for SWD larva and 

trapping methods for SWD adult flies. (Isaacs et al., 2015) 
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To capture the population growth information from the partially observed states 

through the sampling and monitoring, there are several approaches developed, including 

Partially Observed Markov Decision Process (POMDP), adaptive management (AM) 

and Bayesian state-space modeling (BSSM). BSSM offers a framework to 

simultaneously address population uncertainty and partial observability and has been 

extensively used in statistical ecology. (Fan, et. al., 2016) One of the nuances of this 

paper is to incorporate BSSM in transition density estimation. 

 

2.2.Dynamic Structural Model 

The dynamic structural model used in this paper will apply the nested fixed-

point maximum likelihood estimation approach, which is first developed by Rust (1987). 

The original paper applied this method to a simple regenerative optimal stopping model 

of bus engine replacement and found the solution to a stochastic dynamic programming 

problem that formalizes the trade-off between the conflicting objectives of minimizing 

maintenance costs versus minimizing unexpected engine failures. This dynamic 

structural model was applied to many different contexts since then, including water 

management (Timmins, 2002), land use in agriculture (Scott, 2013), agricultural 

productivity (Carroll et al., 2019a), wind turbine shutdowns and upgrades (Cook and 

Lin Lawell, 2019), crop disease control (Carroll et al., 2019c), pesticide spraying 

decisions (Sambucci et al., 2019), and supply chain externalities (Carroll et al., 2019b). 

Arcidiacono and Miller (2011) innovates upon the dynamic structural 

econometric model in Rust (1987) by allowing for unobserved heterogeneity.  Sambucci 

et al. (2019) develops and applies a dynamic structural econometric model with 

unobserved heterogeneity to analyze pesticide spraying decisions of grape growers. 
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CHAPTER 3 

EMPERICAL APPROACH 

 

3.1.Background 

3.1.1. SWD IPM Program in Michigan Blueberry 

Michigan blueberry IPM program against SWD mainly consists of monitoring, 

spraying and other cultural methods to remove leftovers. 

Serving as an alarm of the start of fly activity, SWD adult fly monitoring are 

always carried out using traps and lures, from after fruit set until the end of harvest. The 

traps and lures are available to be purchased from commercial suppliers or homemade 

easily at very low price, less than $10 per trap with lure. Traps for SWD should be hung 

in a shaded area in the fruit zone, using a wire attached to the top of the trap, with a 

minimum of one trap every 5-10 acres. They should be checked for SWD flies at least 

once a week. (Isaacs et al., 2015) 

To monitor whether the fruit are infested and how serious is the infestationthe 

infestation is, the growers are recommended to do fruit sampling and salt solution testing. 

After lightly crushed berries immersed in the salt solution for at least 30 minutes, the 

larva will float in the liquid making them easier to see. (Isaacs et al., 2015) 

Once fruit are ripening and SWD flies are present, registered insecticide 

application will be needed to minimize the risk of infestation until the end of the harvest 

season. With these methods enabling partial observation of the pest population, the 

growers are exposed to more information assisting precise chemical control methods. 

Growers can also consider post-harvest controls including temperature treatment and 

soft-sorting machinery. 

For both adult and larva monitoring, to escalate valid and insightful information, 

the growers or the extension researchers may sample both inside and at the edge of the 
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plots. The only difference of monitoring larva inside the fields comparing to that at the 

edge of the fields is that the data collectors need to go inside the field (just a few tens of 

feet away) to obtain the sampling fruits. All the other appliances and procedures are all 

the same, such as the fruit dunk flotation method or boil test. Hence, the costs for both 

operations are regarded the same in our paper. 

We may expect different pest densities between these locations due to the 

following reasons: 

(1) According to Rufus Isaacs et al. (2015), they have also observed higher 

catches in traps adjacent to fields where they remain wet longer, or adjacent to creeks. 

Because of the worse drainage and ventilation conditions inside the fields comparing to 

at the edge of the fields, we may expect higher observations inside the fields. 

(2) According to Rufus Isaacs et al. (2015) and my interview with Bob 

Carini (Carini Farms), the neighboring wild host plants can harbor SWD such as wild 

grape, pokeberry, honeysuckle, nightshade, dogwood, spicebush, autumn olive, 

raspberry, blackberry, etc. near crop fields; and if the neighboring farms have not 

applied enough insecticides, the over-ripened fruit are not treated correctly, or the 

infestation is not controlled there, they can also become sources of infestation risk. In 

these cases, we may expect higher observations at the edge of the fields. 

However, in our 2018 Michigan blueberry data, little difference between the 

samples inside the fields and those at the edge is detected, so we could consider them 

subsamples of the same fields which elevates the accuracy of the data. 

In the current situation of Michigan blueberry production, most farmers may 

take up the adult fly monitoring using traps and lures, but the fruit sampling methods 

for larva monitoring are basically done by researchers at MSU. The adult fly monitoring 

may give the farmers an early alarm. After observing the presence of SWD, most 

farmers will spray either according to the scouting and reports released weekly by MSU 
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or just following the calendar. The information from MSU are well penetrated with 

70%-80% farmers well covered by MSU extension institute education events in the area. 

Basically, they will use the effective and cheaper insecticides as much as they 

need and as little as they can. There is a strong economic incentive for the growers both 

to spray since the infested blueberries will be totally rejected by the market and lead to 

huge lost, yet they do not want to over spray. Each spray will cost them about $100 per 

acre including insecticide cost and application costs, which can may be a small portion 

comparing to the revenue but will kill the profit significantly. 

The farmers do control for resistance by changing insecticide chemical category, 

but there is no specific rotation order that is a standard one or recommended one. 

 

3.1.2. The Highbush Blueberry Market/Pricing Structure in Michigan 

Michigan grows many different blueberry varieties, spreading the harvest season 

over several months (As shown in the figure below). Not all the fruit on a bush ripens 

at once and each variety can be harvested for 3 to 4 times per season, which lasts for 2 

to 3 weeks. The first harvest often takes place when there are 25 percent of the berries 

are ripe and is typically by hand. These early harvest blueberries are most likely sold on 

fresh market where they will gain a good price. And the other harvests later are probably 

done by machines and will probably go to the processed market. To have fruit for several 

months, growers usually plant multiple cultivars with staggered and overlapping 

harvests. As shown in the figure below, highbush blueberries can endure lower 

temperature and there is later-season varieties whose harvest season can be postponed 

to mid-September. (Mark Longstroth, 2016) 
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Source: Longstroth, Mark. "The Michigan Blueberry Industry in 2018." Michigan State University 

Extension (2018): 5. 

 

 

 
Figure 2 2016 Unit Blueberry Price Originated in Michigan 

Data Source: USDA Fruit and Vegetable Market News Portal 
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Figure 1 Blueberry Harvest Dates at South Haven 
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In Michigan’s southern peninsula, first SWD fly activity is typically in mid-June 

to early July and the population builds through the summer as temperatures continue to 

rise. Highest densities of SWD occur in August and September, so SWD is especially 

problematic for later-season berry crops, including blackberries, fall raspberries, ever-

bearing strawberries, and late-season blueberries. 

Therefore, the later season blueberry crop may be exposed to higher risk of SWD 

infestation while entertaining a higher price on the market at that time. Thus, the farmers 

may also need to decide which type of blueberries to grow and when to harvest. 

However, few growers are willing to replant new cultivars against the infestation 

of SWD. To initiate, the highbush blueberries are long-lived and can be productive for 

over 60 years (the oldest fields at south western Michigan is about this age), with being 

the most productive in their twenties. What’s more, the growers have to bare not only 

the high replanting cost but also the first five to six years’ maintenance expenses without 

any receipts, if new cultivars are planted, and thus the costs for replanting are almost 

prohibitive. Even if the grower decides to change to earlier or later varieties, they will 

only change a very small portion of their blueberry crops. What’s more, with more and 

more blueberries imported from Peru and Mexican, the price of later season cultivar is 

at pressure. Therefore, in this paper we simplify the model by ignoring the replanting 

decision. 

In addition, price per pound of a particular blueberry cultivar is unavailable, 

since blueberries in the United States are not sold with type and origins labeled. On the 

one hand, the blueberries of different cultivars look very similar and only differs in taste. 

On the other hand, the farmers are not willing to pamper their consumers to wait until 

their favorite cultivars come to the market. 
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3.1.3. Different Blueberry Cultivars 

In the main producing areas of Michigan blueberry, each grower divides their 

farms into several plots for different cultivars with distinguished harvesting intervals, 

so as to ensure consecutive market delivery of fresh blueberries from early May to late 

September (Figure 1). 

Therefore, there may exist some interactions between plots due to the 

distinguished harvest season. Since the SWD may lay eggs regardless of the variety of 

blueberries, no matter what the cultivar is on the plots, once a plot is infested, the risk 

of its neighboring plots will increase. Keeping that in mind, if the early cultivars, say 

Blue Crop, on the farm are infested, the grower may apply more insecticides to the late 

cultivars, like Elliott. Blueberries are not threatened by infection before the fruits are 

colored, but once the early varieties are harvested, the pests will transfer to the adjacent 

late varieties. It can be regarded as an early alarm of the risk for the late varieties. 

(According to the interview with Bob Carini (Carini Farms).) 

 

3.2.Intuition and Tradeoffs 

As shown above, there are three types of decision investigated in this paper, 

including monitoring decision, insecticide application decision and harvest decision. 

For each time period (each day), the farmer’s action will be a combination of all these 

three decisions. 

For each time period, if the farmer decides to monitor the adult flies or the larva 

instead of waiting to monitor in a later time period, she will incur a monitoring cost 

consisting of material cost and labor cost but will lose the opportunity to gain a better 

information about the pest population. A partially observed number of adult flies’ 

population will be an effective early alarm of SWD activity, and the fruit sampling 

application crystalizes the contamination degree of the planting outcomes. Both 
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information will facilitate the pest management and reduce the risk of an entire rejection 

of the fruits by markets. 

As for the benefits and costs analysis on apply insecticide application, on the 

one hand, the farmer will bear the material cost, labor cost and sprayer cost, if she 

decides to spray, which are specific to the type of insecticide she choose to apply. On 

the other hand, the insecticide application could help to forestall the detriment caused 

by the growing population of SWD, which will bring serious yield losses during the 

harvesting stage. In contrary, if the farmer chooses not to apply any insecticide at that 

time period, there will be no cost incurred on that day, but she will be at the risk of 

higher damage due to SWD infestation at the end of the growing season. Therefore, the 

main tradeoff governs a farmer’s decision to spray a particular insecticide against to 

wait is between the costs of insecticide application incurred at this time period and the 

risk of higher blueberry damage due to SWD infestation at the end of growing season, 

which will be shown by the discounted revenue loss in the continuation value. 

Another tradeoff considered when choosing a particular insecticide over another 

is between the costs incurred for the specific insecticide applied and the risk of higher 

damage due to insecticide resistance, since we assume that if the grower sprays the same 

cheaper insecticide consecutively, the SWD population may become more resistant to 

the particular insecticide, and thus results in lower yield. 

Lastly, since on the time period that the grower chooses to harvest, she receives 

the revenue determined by the yield and market price, and the uncertainty of damage 

due to SWD is realized, the harvest timing is also a critical decision to make by the 

farmer. This choice is governed by two opposing forces. If the farmers decide to harvest 

earlier, they will confront lower risk of contamination since the population of SWD 

haven’t reached its peak at that time and trim off the costs of monitoring and spraying 
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due to fewer control measures demanded against SWD, while they will simultaneously 

let go the premium profits boosted by price advantage in the later season.  

All these decisions have an invertible nature similar to investment, with sunk 

cost incurring at the decision made. What’s more, once the decision is made, the grower 

cannot recover it all should she change her mind. Since the state variables are evolving 

stochastically over time, there is uncertainty over the future rewards as detailed above. 

Thus, there will be leeway over timing of monitoring, spraying, harvest, or some 

combination of these decisions, for the growers can postpone their actions to get better 

information about the future. Therefore, the structural dynamic model will help us to 

capture all these characteristics of the decision-making process and allow for the 

invisible opportunity cost of waiting to take the actions later. 

 

3.3.Data 

The main data concerning highbush blueberry IPM program in Michigan State 

used in this paper consisted of two part, one from 2016 2-sample farmer survey data, 

and the other from 2018 Michigan State University Extension collected data. To form 

the final panel data used for our structural model construction and analysis, we also 

collected data concerning pesticide characteristics and cost estimations of all sorts, 

including machinery, labor and materials, from both open source websites, and private 

visits and interviews with the farmers, processors, extension educators and experts from 

Entomology department. 

The Michigan 2016 and 2018 data we used, and their sources are listed as in 

Tables 1 and 2. In accordance with the requirement of the structural models, we 

manipulated them into daily panel data with the time horizon in 2016 being from June 

1st to August 31st, which is 92 days, and that in 2018 being from July 1st to September 
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15th, which is 76 days. In 2016 data, we have two samples in the survey data, which 

consists of 184 observations. And for the 2018 data, we have 6 growers with 3 different  

 

Table 1 2016 Michigan Highbush Blueberry Data Descriptions and Sources 

Variable Description Measurement Source 

Basic 

information 

Bearing season, 

acreage 
Daily based 

Philip Fanning and Rufus Isaacs. 

2016. MSU Grower Survey. 

Crop stages 

Full bloom, early 

green fruit, late green 

fruit, fruit coloring, 

harvest 

Daily based 
Philip Fanning and Rufus Isaacs. 

2016. MSU Grower Survey. 

Insecticide 

application 

Date applied, 

insecticide brand, 

total amount, unit 

price($/oz), efficiency 

against SWD, time 

spent (labor hours) 

Daily based 
Philip Fanning and Rufus Isaacs. 

2016. MSU Grower Survey. 

SWD 

monitoring 

Date, costs, adult 

SWD captured, larva 

sampling size and 

number found 

Daily based 
Philip Fanning and Rufus Isaacs. 

2016. MSU Grower Survey. 

Insecticide 

information 

Insecticide efficiency, 

class, PHI days, 

minimum days 

between sprays, days 

of activity, and etc. 

By year 

Rufus Isaacs, John Wise, Carlos 

Garcia-Salazar, and Mark 

Longstroth. 2015.06. SWD 

Management Recommendations 

for Michigan Blueberry. 

Costs 
Monitoring cost, 

spray cost. 
By year 

Philip Fanning and Rufus Isaacs. 

2016. MSU Grower Survey. 

Mark Longstroth. 2018. Cost 

Analysis of Blueberry Potential 

Profit.  

Bureau of Labor Statistics, 

Department of Labor. 2017. 

Occupational Employment 

Statistics (OES) Survey.  

 

varieties each amounting to 18 different grower-variety combinations. Since the 

monitoring and spraying decisions of the same grower across different varieties are 

independent, we can model the decision-making of each grower-variety as separate 
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decision-making problems. Thus, we have 18 samples in 2018 data, which add up to 

1,386 observations. 

 

 

Table 2 2018 Michigan Highbush Blueberry Data Descriptions and Sources 

Variable Description Measurement Source 

Basic 

information 

Crop, bearing season, 

acreage, weather 
Daily based 

Philip Fanning and Rufus Isaacs. 

2019.02. 2018 Spray Records. 

Insecticide 

application 

Date applied, 

insecticide brand, 

total amount, unit 

price($/oz), 

efficiency against 

SWD, time spent 

(labor hours) 

Daily based 
Philip Fanning and Rufus Isaacs. 

2019.02. 2018 Spray Records. 

SWD 

monitoring 

Date, costs, adult 

SWD captured, larva 

sampling size and 

number found 

Daily based 

Philip Fanning and Rufus Isaacs. 

2019.02. 2018 SWD Fruit 

Assessment. 

Philip Fanning and Rufus Isaacs. 

2019.02. 2018 SWD Study Trap 

Data. 

Insecticide 

information 

Insecticide 

efficiency, class, PHI 

days, minimum days 

between sprays, days 

of activity, etc. 

By year 

Rufus Isaacs, John Wise, Carlos 

Garcia-Salazar, and Mark 

Longstroth. 2015.06. SWD 

Management Recommendations 

for Michigan Blueberry. 

Costs 
Monitoring cost, 

spray cost. 
By year 

Philip Fanning and Rufus Isaacs. 

2019.02. 2018 Spray Records. 

Mark Longstroth. 2018. Cost 

Analysis of Blueberry Potential 

Profit. 

Occupational Employment 

Statistics (OES) Survey. Bureau of 

Labor Statistics, Department of 

Labor 

 

The following are the descriptive statistics of main variables (Tables 3 and 4). I 

will further detail the discretized variables fly_f_discrete, fly_m_discrete and 

lar_discrete_total later in the variable section. 
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Table 3 Descriptive Statistics of Main Variables for 2016 Data 

  count mean std min Percentiles max 

          25% 50% 75%   

                  

choice_ins 184 0.15 0.48 0 0 0 0 2 

choice_mon_adu 184 0.10 0.30 0 0 0 0 1 

choice_mon_lar 184 0.07 0.26 0 0 0 0 1 

int_ins 184 37.22 44.80 1 3 7 99 99 

int_mon_adu 184 31.01 42.83 1 3 6 99 99 

int_mon_lar 184 49.08 47.43 1 4 8 99 99 

last 184 -32.89 47.84 -99 -99 1 2 2 

fly_females 184 -23.86 47.63 -99 -99 2 6 25 

fly_f_discrete 184 -27.32 45.11 -99 -99 1 1 2 

fly_males 184 -24.91 46.96 -99 -99 1 4 25 

fly_m_discrete 184 -27.40 45.07 -99 -99 1 1 2 

lar_rate 184 -46.76 49.61 -99 -99 0 0 1 

lar_discrete 184 -46.76 49.61 -99.00 -99.00 0.00 0.00 1.00 

                  

 

Table 4 Descriptive Statistics of Main Variables for 2018 Data 

Variables count mean std min Percentiles max 

          25% 50% 75%   

                  

choice_ins 1386 0.04 0.26 0 0 0 0 2 

choice_mon_adu 1386 0.05 0.21 0 0 0 0 1 

choice_mon_lar 1386 0.04 0.20 0 0 0 0 1 

int_ins 1386 64.03 34.26 1 76 76 76 99 

int_mon_adu 1386 57.06 40.78 1 6 76 99 99 

int_mon_lar 1386 59.87 41.85 1 6 76 99 99 

last 1386 -36.62 48.73 -99 -99 1 2 2 

fly_females 1386 -28.67 45.53 -99 -99 0 0 43 

fly_f_discrete 1386 -28.33 45.66 -99 -99 1 1 2 

fly_males 1386 -28.73 45.49 -99 -99 0 0 42 

fly_m_discrete 1386 -28.36 45.65 -99 -99 1 1 2 

lar_rate 1386 -38.13 48.21 -99 -99 0 0 0 

lar_discrete 1386 -38.14 48.20 -99.00 -99.00 0.00 0.00 0.00 
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3.4.Empirical Strategies 

In this model, the farmer makes discrete decisions on whether to apply 

insecticide and which category of insecticide to apply each day, based on state variables 

either observable or unobservable to econometricians. This decision-making process 

has the irreversible nature and involves uncertainty over the future rewards, since the 

application can affect the possibility of SWD infection of blueberries, and thus will 

significantly affect the revenue of the plots. Therefore, the decision can be regarded as 

a dynamic investment decision-making process that is very similar to the one described 

in Sambucci et al. (2019).  

 

3.4.1. Assumptions 

a) The blueberry crop is under the risk of infection from the beginning of fruit 

coloring stage to the end of harvesting season since female SWD can only lay eggs in 

ripening or ripened fruits, so the risk of infection never appears before the full bloom 

stage, we make time period 0 be the time when the blueberries enter the full bloom 

stage.  

There is no effect between different growing seasons, so each grower-year 

combination will be treated as a different decision-making process. 

b) There is no spatial externality between growers in the same neighborhood, 

including technology spillovers, SWD population migration and etc. 

Assumption b) and c) ensures that each grower-year combination will be treated 

independently as a dynamic individual agent investment decision-making process 

instead of a dynamic game between growers.1 

                                                 

 
1 Since for each year-grower combination, the decision-making process is an isolated dynamic 

optimization system. We omit the index of grower, i , from here on for succinctness. 
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Starting from the time period 0  t when the blueberries are planted until the last 

time period T  when the harvest season starts. The grower ( ){1,..., }i i I  chooses a 

sequence of combinations of four discrete decisions 0 1, , T   , where {0,..., }t T  

is the index of time period which is the number of days starting from the initiation of 

full bloom stage in each growing season, to maximize the discounted present value of 

the entire stream of per-period payoff 

 

( ) 
1

0 
0

π , , , , ;max
T

t

t t t t
T t

t t t

E x z v


  
+

=
=


 

where tx  and tz  are vectors of observable exogenous and endogenous state variables 

that influence the probability of SWD infection level respectively; v  is an unobserved 

time-invariant state variable measuring susceptibility to SWD specific to each farm; 
t  

is a vector of random shocks ( )t t   to per-period utility, one for each possible action 

at in the action set, that is observed by the grower, but not by the econometrician; and 

  is a vector of parameters to be estimated. 

 

3.4.2. Choice Variables 

For each time period t , each grower i  will decide whether or not to monitor. 

Demanding different methods and serving for distinguished purposes, monitoring for 

larva and adult flies may be taken on different days, so we separate the monitoring 

decision into two different choice variables. We denote the decision of monitoring for 

SWD adult flies by 

, where {0,1}ta A A = , 

and that of monitoring for SWD larva by  

, where {0,1}tb B B = . 

For each time period t , each grower i  will choose one of the three common 

types of insecticide to spray or choose not to spray and to wait until later. We incorporate 



18 

 

 

 

 

this decision with three different values for insecticides application choice variable. 

Thus, we have 

, where {0,1,2}tc C C = , 

In 2016 data, the values are defined as 

0 : not to apply insecticide;

1: to apply organophosphate insecticide;

2 : to apply  pyrethroid insecticide.

=

=

=  

And in 2018 data, the values are defined as 

0 : not to apply insecticide;

1: to apply Mustang Maxx insecticide;

2 : to apply Brigade 2EC insecticide.

=

=

=  

The harvest seasons of highbush blueberries usually last for around three weeks, 

intriguing often about three harvests for each season with first two by hand and the last 

one by machine, and the harvest interval is highly relied on the blueberry cultivars. As 

stated above, growers are reluctant to substituting the exiting crops with other varieties 

just regarding the harvest season due to the high replanting cost. In sight of this, we 

mainly capture the harvesting time difference by adding variety dummy variables for 

fixed effect, instead of adding another choice variable for the harvest action. 

The actual discrete action is a combination (tuples) of all the action variables 

above. Each grower will choose exactly one of these action tuples each day. We denote 

it by 

( , , ),t t t t ta b c where A B C =  =   . 

 

3.4.3. Observable State Variables 

The observable state variables are divided into exogenous ones, tx , and 

endogenous ones, tz . The exogenous variables are assumed to evolve as finite state first-

order Markov processes, with independent identically conditional distribution

( | )x t+1 tF x x . The exogenous variables are as following: 
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a) Maximum days of activity of the insecticide for each insecticide,  

max_active_O , max_active_P  in MI 2016 data, and max_active_mustang , 

max_active_brigade  in MI 2018 Data. 

 

b) Cost for each possible monitoring and spraying choices for the whole plot 

(whether or not the grower actually chooses that action), 

cost_mon_adu , cost_mon_lar , cost_org , and cost_pyr  in MI 2016 data; 

cost_mon_adu , cost_mon_lar , cost_mustang , and cost_brigade  in MI 2018 

data. 

The costs include labor cost, material cost and machinery cost, which are 

specific to each grower-year combination and corresponding to their valid actions. 

 

The endogenous variables, tz , are assumed to evolve as finite state first-order 

Markov processes, with independent identically conditional distribution 

z t+1 t t tF (z x , z ,g ;q)
 . The endogenous variables tz  are shown as below: 

 

a) Interval since last monitoring, tint_mon_adu and tint_mon_lar . 

These variables transited deterministically, 

1 1

1

99 , if haven't monitored in the year

1, if 0

1 , if 1

t t t

t

int_mon_adu int_mon_adu a

a

− −

−




= + =
 = , 

1 1

1

99 , if haven't monitored in the year

1 , if 0

1 , if 1

t t t

t

int_mon_lar int_mon_lar b

b

− −

−




= + =
 = . 

Since the monitoring data is weekly based, the number of days since last update 

of the monitor information may change the grower’s estimation of the SWD population 

size and the expectation of SWD infection in the future.  
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We code them as “99” if the grower has not yet monitored this season, which is 

much longer than the maximum days of activity for any possible insecticide, and which 

represents that the interval since last monitoring is greater or equal to 99 days. In other 

words, if the grower has not yet monitored this season, we assume any monitoring from 

any previous season does not apply for this season and therefore we will just choose a 

large number for tint_mon_adu and tint_mon_lar  to represent this. 

In the 2018 data, we code any intervals greater than 10 to be 76 which is the 

length of the time horizon for each grower-variety combination in the 2018 MI data. 

That is,  

1 1 1

1 1

1

99 , if haven't monitored in the year

1, if 0 and 10

76 , if 0 and 10

1 , if 1

t t t

t

t t

t

int_mon_adu a int_mon_adu
int_mon_adu

a int_mon_adu

a

− − −

− −

−




+ = 
= 

= 
 =

 

1 1 1

1 1

1

99 , if haven't monitored in the year

1 , if 0 and 10

76 , if 0 and 10

1 , if 1

t t t

t

t t

t

int_mon_lar b int_mon_lar
int_mon_lar

b int_mon_lar

b

− − −

− −

−




+ = 
= 

= 
 =

 

The reason for this manipulation is to not only reduce the dimension of the 

dimension of the functions but also magnify the different influences of interval length 

that are greater than the maximum active interval of the insecticides on the utility 

function, since we believe that the risk will increase if the information is invalid when 

the crops are no longer effectively protected by the insecticides. 

 

b) The interval since last insecticide application, tint_ins . 

The interval since last insecticide application is an endogenous variable, 

measured in days and has a deterministic pattern of evolvement: 
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1 1

1

99 , if haven't applied insecticide in the year

1 , if 0

1 , if 1

t t t

t

int_ins int_ins c

c

− −

−




= + =
   

Similarly, as in a), we code it as “99” if the grower has not yet applied insecticide 

this season, which is much longer than the maximum days of activity for any possible 

insecticide, and which represents that the interval since last spraying is greater or equal 

to 99 days. In other words, if the grower has not yet applied insecticide this season, we 

assume any insecticide from any previous season has long worn off, and therefore we 

will just choose a large number for tint_ins  to represent this. 

In the 2018 data, we code any intervals greater than 10 to be 76 which is the 

length of the time horizon for each grower-variety combination in the 2018 MI data. 

That is, 

1 1 1

1 1

1

99 , if haven't applied insecticide in the year

1 , if 0 and 10

76 , if 0 and 10

1 , if 1

t t t

t

t t

t

int_ins c int_ins
int_ins

c int_ins

c

− − −

− −

−




+ = 
= 

= 
 

 

The reason for this manipulation is to not only reduce the dimension of the dimension 

of the functions but also magnify the different influences of interval length that are 

greater than the maximum active interval of the insecticides on the utility function, since 

we believe that the risk will increase dramatically (not linear relationship) if the crops 

are no longer effectively protected by the insecticides. 

 

c) Discretized SWD larva  found rate in the latest monitor process, 

tlar_discrete , discretized female SWD trapped, tfly_f_discrete , and discretized 

male SWD trapped, tfly_m_discrete  . 

The farmer uses saltwater extraction method to monitor SWD larva amount on 

a weekly base and it is reported as a rate (amount of larva found/sample size). The 

farmer uses traps to monitor SWD fly amount on a weekly base and they are reported 
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as number of flies trapped per trap. They may affect the decision-making process, since 

the monitored data is partially observed information about the population of SWD, 

which will directly affect percentage of damage of fruits due to SWD.  

For adult fly captured per trap tfly_males  and tfly_females , I binned them into 

3 bins, 0 for no adult flies trapped, 1 for less than or equal to 20 flies trapped in each 

trap on average, and 2 for greater than 20 flies trapped in each trap on average; and for 

larva found rate tlarva , I discretized it into a dummy, 0 for less than or equal to 50% 

and 1 for greater than 50%. And I use -99 to represent the condition that the grow has 

not yet monitored this season for each of the three variables. Figures 3 and 4 shows the 

original data for these three variables in MI 2016 data. And Figures 5 and 6 are figures 

of those of 2 samples from MI 2018 data. 

 

 

 
Figure 3 Monitoring Data of Grower 1 in MI 2016 Data 

Note: I am not showing -99 for a better scaling. 
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Figure 4 Monitoring Data of Grower 2 in MI 2016 Data 

Note: I am not showing -99 for a better scaling. 

 

 

 
Figure 5 Monitoring Data of Grower 1 Bluecrop Cultivar in MI 2018 Data 

Note: I am not showing -99 for a better scaling. 
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Figure 6 Monitoring Data of Grower 1 Elliott Cultivar in MI 2018 Data 

Note: I am not showing -99 for a better scaling. 

 

Tables 5 to 7 illustrate the distribution of the corresponding discretized variables 

in 2016 and 2018 data respectively. 

 

Table 5 Summary of Discretized Monitoring Data (2016 MI) 

Values 
-99 0 1 2 

Count Proporsion Count Proporsion Count Proporsion Count Proporsion 

fly_f_ 

discrete 

Grower 1 33 35.87% 21 22.83% 28 30.43% 10 10.87% 

Grower 2 19 20.65% 14 15.22% 59 64.13% 0 0.00% 

Total 52 28.26% 35 19.02% 87 47.28% 10 5.43% 

fly_m_ 

discrete 

Grower 1 33 35.87% 14 15.22% 35 38.04% 10 10.87% 

Grower 2 19 20.65% 7 7.61% 66 71.74% 0 0.00% 

Total 52 28.26% 21 11.41% 101 54.89% 10 5.43% 

larva_ 

discrete 

Grower 1 40 43.48% 42 45.65% 10 10.87% 

  Grower 2 47 51.09% 45 48.91% 0 0.00% 

Total 87 47.28% 87 47.28% 10 5.43% 
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Table 6 Summary of Discretized Female Flies Monitoring Data (2018 MI) 

Values 
-99 0 1 2 

Count Proporsion Count Proporsion Count Proporsion Count Proporsion 

fly_f_ 

discrete 

Bluecrop: 134 29.00% 13 2.81% 315 68.18% 0 0.00% 

Grower 1 15 19.48% 0 0.00% 62 80.52% 0 0.00% 

Grower 2 77 100.00% 0 0.00%   0.00% 0 0.00% 

Grower 3 9 11.69% 13 16.88% 55 71.43% 0 0.00% 

Grower 4 15 19.48% 0 0.00% 62 80.52% 0 0.00% 

Grower 5 9 11.69% 0 0.00% 68 88.31% 0 0.00% 

Grower 6 9 11.69% 0 0.00% 68 88.31% 0 0.00% 

Jersey: 140 30.30% 0 0.00% 222 48.05% 100 21.65% 

Grower 1 15 19.48% 0 0.00% 15 19.48% 47 61.04% 

Grower 2 77 100.00% 0 0.00%   0.00% 0 0.00% 

Grower 3 9 11.69% 0 0.00% 68 88.31% 0 0.00% 

Grower 4 15 19.48% 0 0.00% 62 80.52% 0 0.00% 

Grower 5 9 11.69% 0 0.00% 21 27.27% 47 61.04% 

Grower 6 15 19.48% 0 0.00% 56 72.73% 6 7.79% 

Elliott: 134 29.00% 0 0.00% 271 58.66% 57 12.34% 

Grower 1 15 19.48% 0 0.00% 54 70.13% 8 10.39% 

Grower 2 77 100.00% 0 0.00% 0 0.00% 0 0.00% 

Grower 3 9 11.69% 0 0.00% 68 88.31% 0 0.00% 

Grower 4 15 19.48% 0 0.00% 21 27.27% 41 53.25% 

Grower 5 9 11.69% 0 0.00% 60 77.92% 8 10.39% 

Grower 6 9 11.69% 0 0.00% 68 88.31% 0 0.00% 

Grand Total 408 29.44% 13 0.94% 808 58.30% 157 11.33% 

 

Table 7 Summary of Discretized Male Flies Monitoring Data (2018 MI) 

Values 
-99 0 1 2 

Count Proporsion Count Proporsion Count Proporsion Count Proporsion 

fly_m_ 

discrete 

Bluecrop: 134 29.00% 13 2.81% 315 68.18% 0 0.00% 

Grower 1 15 19.48% 0 0.00% 62 80.52% 0 0.00% 

Grower 2 77 100.00% 0 0.00%   0.00% 0 0.00% 

Grower 3 9 11.69% 13 16.88% 55 71.43% 0 0.00% 

Grower 4 15 19.48% 0 0.00% 62 80.52% 0 0.00% 

Grower 5 9 11.69% 0 0.00% 68 88.31% 0 0.00% 

Grower 6 9 11.69% 0 0.00% 68 88.31% 0 0.00% 

Jersey: 140 30.30% 19 4.11% 154 33.33% 149 32.25% 

Grower 1 15 19.48% 0 0.00% 15 19.48% 47 61.04% 

Grower 2 77 100.00% 0 0.00%   0.00% 0 0.00% 

Grower 3 9 11.69% 19 24.68% 49 63.64% 0 0.00% 

Grower 4 15 19.48% 0 0.00% 48 62.34% 14 18.18% 

Grower 5 9 11.69% 0 0.00% 27 35.06% 41 53.25% 

Grower 6 15 19.48% 0 0.00% 15 19.48% 47 61.04% 

Elliott: 134 29.00% 13 2.81% 307 66.45% 8 1.73% 

Grower 1 15 19.48% 0 0.00% 54 70.13% 8 10.39% 

Grower 2 77 100.00% 0 0.00% 0 0.00% 0 0.00% 

Grower 3 9 11.69% 6 7.79% 62 80.52% 0 0.00% 

Grower 4 15 19.48% 7 9.09% 55 71.43% 0 0.00% 

Grower 5 9 11.69% 0 0.00% 68 88.31% 0 0.00% 

Grower 6 9 11.69% 0 0.00% 68 88.31% 0 0.00% 

Grand Total 408 29.44% 45 3.25% 776 55.99% 157 11.33% 
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Since the monitoring of adult SWD and larva are serving for different purposes 

and adopting distinct methods, the starting date of monitoring data may be different for 

flies and larva, but it will be the same for female and male flies. Typically, the larva 

sampling starts a few weeks later then adult fly monitoring. Therefore, this can be the 

case that both tfly_f_discrete , tfly_m_discrete  are available however tlarva_discrete  

is -99. 

These variables will evolve as functions of t , tlarva_discrete , tfly_f_discrete , 

tfly_m_discrete , tint_mon_adu , tint_mon_lar , tint_ins , tlast , max_active_O , and 

max_active_P  (or max_active_mustang and max_active_brigade  for 2018 data) , 

which can be estimated by nonparametric methods, such as empirical average, which 

enables us to resolve the endogeneity problem. However, this may be demanding in 

sample size, thus if applicable, I may incorporate biological model that involves 

knowledge of pest population dynamics, allowing for more precise modeling of optimal 

pest management, which is discussed later. Therefore, these variables have independent 

identically conditional distributions, larvaF ( ), ,tt t t+1larva_discr t g xe e z , 

fly_fF ( ), ,tt t t+1fly_f_discr t g xe e z  and fly_F ( ), ,m t t tt+1fly_m_discrete g x z  respectively. 

 

d) The most recent spray decision, tlast . 

These are lagged terms of insecticide application action variable and their 

transition matrix are deterministic given by the following relationship: 

( ) ( )

( ) ( )

1 1 1

1 1 1

1 , if 1 0 1

2 , if 2 0 2 .

0 , otherwise

t t t

t t t t

c c last

last c c last

− − −

− − −

 =  =  =


= =  =  =



 

Here, if the grower has not yet applied any insecticide this season, then I code 

them all as “0” for “have not applied any insecticide”. 
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They are included since they may affect the insecticide category choice if the 

grower considers insecticide rotation to prevent resistance development. Although the 

implementation of rotation may escalate cost of application, but I hypothesized that 

farmers would like to sacrifice a little in the current insecticide cost for not losing the 

cheaper options forever. 

 

3.4.4. Empirical Strategy for MI 2016 Data 

Since no yield or lost due to SWD damage data is available now, I consider a 

per-period payoff function consists of two parts, one visible cost part, and two invisible 

cost part, including the risk part I composed of interval variables and the risk  part II 

composted of monitoring results, to capture the risk aversion characteristics of the 

growers. 

To initiate, I assume that there is a cost incurred for monitoring and insecticide 

application for all time period depending on the actions taken expressed by  

1

_ ( ) ( ) ( )cost( ,

_ _ _

, ) it it it

it it

it it it t cost ins c cost_adu a cost_lar b

l same c last dum

a b

m

c

y

x



− − −

− 

=


 (1) 

If the growers care about the rotation of insecticides at all, there will exist an 

invisible cost representing the risk of elevating the insecticide resistance when the 

insecticide choice is the same as the last spraying decision. Thus, I incorporate this 

nuance with the last term in Equation (1). 

If the grower does not spray insecticide on day t (i.e., 0itc = ), the grower risks 

SWD infestation. Firstly, consider the risk I part which is the interval variable part of 

the cost function, the negative of the per-period payoff function.  

As mentioned before, it is intuitive that the grower will at dramatically higher 

risk of infestation when the intervals are greater than the maximum days of activity of 

the insecticides, so there may be a jumping discontinuity in the effects of interval 

variables on the utility function. Additionally, the growers may also apply insecticides 
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according to the calendar instead of the monitoring data, in which case they may apply 

insecticides whenever the interval variables being exactly the maximum days of activity. 

In sight of this, we define two variables _int_ratio under  and _int_ratio over out of 

interval since last insecticide application as below. 

,  if 99

                9

max_

          

)

 

(

  , if 9

it
it

it

i

it

t

int_ins
last

i t aa ctr ivnt_ e lasio

T last

t


 −

= 
 = −

 

     0      , if <1 
_

, if 1

it

it

it it

int_ratio
int_ratio over

int_ratio int_ratio


= 


  

, if <1 
_

     0      , if 1

it it

it

it

int_ratio int_ratio
int_ratio under

int_ratio


= 


 

And we discretize the monitoring interval variables as below to form our second 

function specification. 

0, if 1

1, if ,

2 , if 99

t

int_mon_adu max_active

int_mon_adu_discrete int_mon_adu max_active

int_mon_adu max_active int_mon_adu

 


= =
   =

 

0, if 1

1, if ,

2 , if 99

t

int_mon_lar max_active

int_mon_lar_discrete int_mon_lar max_active

int_mon_lar max_active int_mon_lar

 


= =
   =

 

where  is the maximum days of activity of the last insecticide applied.max_active  

Hence, the risk I part is sketched as below. 

( )  
 

 
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









 + 
 

 +
 
 

 + = − =  
 −  +    

 = −   


 

(2) 

Then consider the risk II part of the equation. For the Michigan 2016 panel data, 

there are only 2 growers, so it does not make sense to capture an unobserved 

heterogeneity using an E-M algorithm to estimate its distribution. Instead, with only 2 

growers, any unobserved heterogeneity would be fully captured simply by having a 
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different constant for each grower, which is a grower fixed effect.2 Therefore, I adopt a 

set of dummy variables for each of the two growers, 
(1)  and 

(2) , where 

( )( )
the observation belongs 

.
1, if

1,2
0,

to grower i

otherwise

i i


= =
  

Additionally, I assume that if the grower has not yet monitored, the risk is as if 

it the measurements were all the worst-case scenario, which assembles the risk aversion 

of growers. In this case, values of discretized adult monitoring variables will be 2 and 

value of discretized larva monitoring variable will be 1. For concreteness, with the 

assumption of the worst-case risk scenario if grower has not yet monitored, I define 

, if 99
,

2 ,

t t

t

fly_m_discrete fly_m_discrete
fly_m_disc_expected

otherwise

 −
= 


 

, if 99
,

2 ,

t t

t

fly_f_discrete fly_f_discrete
fly_f_disc_expected

otherwise

 −
= 


 

, if 99
,

1 ,

t t

t

larva_discrete larva_discrete
larva_disc_expected

otherwise

 −
= 


 

Lastly, to capture the feature that the relationship between the pest population 

and the actions may be non-linear, since there might be some threshold above which the 

farmers will abandon the fruits and not apply insecticides anymore in that growing 

season is a good one, I the fully non-parametric, with a different coefficient on each bin 

of pest monitoring variables in th risk part. 

Thus, I have construed the risk part as below, which only exists when the choice 

of action this time period is 0. 

                                                 

 
2 This is probably why we are having trouble identifying distribution of the unobserved heterogeneity 

when using the E-M algorism, and that the best specifications seem to have probability of high 

susceptibility either as 0.5 (i.e., different constant for each grower) or close to 1 (i.e., same constant for 

each grower). For more details about this method, please refer to section 3.4.5. 
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
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


 
(3) 

Therefore, our final version of specification for the per-period payoff in 2016 

model is illustrated as below.  
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− =   = +

 = +

 +



( )it it
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

 
 
 
 


 
 
 
 
 
 

+

 

(4) 

Here, [ ]  is the Iverson bracket, which converts any logical proposition into a 

number that is 1 if the proposition is satisfied, and 0 otherwise, i.e., 

1,  if P is true;
[P]=

0,  otherwise.





 

We define 1 2 12( , ,..., ) '  =  are the parameters to be estimated. ( )it it   is the 

private shock to grower i  at time t , which is assumed to be independent identically 

distributed across all agents, time periods and actions. We assume the private shocks it  

follow i.i.d. extreme value distribution conditional on decision it . 
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And I hypothesize that the parameters here, 1 to 10 , are statistically significant 

and positive, implying that the growers are taking actions, with the guidance of the 

monitoring data, and with the consideration of insecticide resistance and sustainability. 

 

3.4.5. Empirical Strategy for MI 2018 Data  

Firstly, I introduce a new set of variables, dummies for the presence of 

blueberry variety X  on the plot, X , where  

o

1, if

0, if

blueberry type X is on the plot

blueberry type X is not on the pl t
X


= 
 , 

}Je s{B elue ,Crop r y Ell, iottX  . 

These variables enable us to incorporate variety fixed effect which controls for 

the preference towards different harvesting time. 

Secondly but more importantly, I will allow for unobserved heterogeneity in the 

susceptibility to SWD of the blueberries across different farms in this model. The 

heterogeneity can raise from different aspects, for instance, as below: 

a) Different level of susceptibility to SWD of the blueberries across different 

farms. This may due to different geographic conditions of different farms. 

As reported by Rufus Isaacs et al. (2015), presence of honeysuckle near 

fields is a predictor of more activity from SWD. And they also observed 

higher catches in traps adjacent to fields where they remain wet longer, or 

adjacent to creeks. 

b) Methods taken before the data available can affect the farms’ condition in 

SWD infection. For instance, improper use of insecticides or a lack in 

insecticide rotation may lead to higher resistance and higher vulnerability of 

the SWD population specific to that neighborhood. 

c) The growers are making the decisions depending on their perception of 

whether the neighbor is actively managing their fields and the infection 
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situation of the cultivars harvested earlier, which cannot be observed by the 

econometricians. They may treat fields near infested fields or careless 

neighbors as susceptible fields and apply more insecticides. 

Here, for simplicity, I adopt only one unobserved state variable, v , representing 

the susceptibility to SWD of the blueberry farms. It is discretized into two different 

levels, 0 (low susceptibility level) and 1 (high susceptibility level). 

The only difference in the per-period payoff setting is the risk II function. The 

version for the MI 2018 data is shown as below. 
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 
 
 
 
 
 
 
 

+ 
 

  

 

(5) 

Therefore, our final version of specification for the per-period payoff in 2018 

model is illustrated as below.  
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(6) 

Here, [ ]  is the Iverson bracket, which converts any logical proposition into a 

number that is 1 if the proposition is satisfied, and 0 otherwise, i.e., 

1,  if P is true;
[P]=

0,  otherwise.





 

We define 1 2 14( , ,..., ) '  =  are the parameters to be estimated. ( )it it   is the 

private shock to grower i  at time t , which is assumed to be independent identically 

distributed across all agents, time periods and actions. We assume the private shocks it  

follow i.i.d. extreme value distribution conditional on decision it . 

And we hypothesize that the parameters, 1 to 10  and 14 , are statistically 

significant and positive, implying that the growers are taking actions, with the guidance 

of the monitoring data, with the consideration of insecticide resistance and sustainability, 

and with the recovered observation of unobserved heterogeneity.  

 

With these in mind, we can now give the sequence problem and Bellman 

equation in this case. The decisions made in each period depend only on the current 
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values of the state variables , , ,t t tx z v .3 The decision process can then be described as 

a policy function ( ), , ,t t tx z v  . A sequence of decision rules ( )0 1, , ,T T   =   is a 

decision policy. The optimal policy is the one that maximizes the grower’s discounted 

present value of the entire stream of per-period payoff, as given by the following 

dynamic optimization sequence problem: 

 ( )
0

1

0 0

0
{ }

π , , , , ; , ,max
T

t t

T
t

t t t t

t

E x z v x z v


  
= =



+



 
 
 
   

The value function for each time t is given by the following Bellman equation: 

 

( ) ( ) ( ) 1, , , , , , , ; βE , , , , , , ; , 0, ,maxt tV x z v x z v V x z v x z v t T


     +


   = + =     

where , ,x z   are the current values, and , ,x z    are the future values of the variables. 

Producers observing the current state of ( ), ,x z   will choose action    to maximize 

the current period payoff plus the discounted value of the expected future value function. 

The dynamic programming problem can be solved backwards starting with harvest 

period T+1, when the per-period payoff is assumed to be 0. 

 We use a daily discount factor of 
exp(ln( ))

1

annual
daily

T


 =

+
, which yields an annual 

discount factor of 0.9annual =  over the ( 1)T + -day finite horizon. 

 

  

                                                 

 
3 From here on, to make it concise, we only index the variables with t, considering it as identical 

and independent finite horizon dynamic decision progress in each growing season for each variety the 

grower plants. 
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CHAPTER 4 

ECONOMETRIC ESTIMATION APPROACH 

 

4.1.Estimation Approach for 2016 Model 

4.1.1. Estimating Continuation Value by Backward Iteration 

The vector of parameters to be estimated is 1 2 14( , ,..., ) '  = . 

The dynamic structural model set up above cannot identify the discounting 

factor  , thus we would like to specify two different values for the discount factor, 

0.999daily =  for dynamic scenario and 0.95daily =  for myopic scenario, and conduct 

a likelihood ratio test between these two situations to determine which type of process 

has higher predictability for the decisions observed in the data. We may find other 

variables to identify the discount factor later to check for the robustness of the results. 

We assume the private shocks t  follow i.i.d. extreme value distribution 

conditional on decision t .  

And we also assume conditional independence as below: 

 
1 1 1 1 1 1Pr( , , , , , ; ) Pr( , , , , ; )Pr( , , , )t t t t t t t t t t t t t tx z x z v x z x z v x z v   + + + + + +=  

 

Let ( )0 , , , ;x z v    denote the deterministic component of the per-period payoff, 

which is assumed to be linearly separable from the stochastic component ( )  , the 

Bellman equation can then be rewritten as: 

( ) ( ) ( ) ( ) 0 1, , , , , , ; ε βE , , , , , , ; , 0, ,maxt tV x z v x z v V x z v x z v t T


    +


   = + + =   

 

The continuation value ( )1E , , , , , , ;tV x z v x z v +
      is the expectation of the 

value function next period taken over error term   and all possible states of next period, 

conditional on this period’s states and actions taken ( ), , ,x z v  . We denote the 

continuation value as ( ) ( )1, , , ; E , , , , , , ;t t t t tU x z v V x z v x z v  +
   =    .  

Then the Bellman equation becomes 

0( , , , ) { ( ) ( ) ( )}, 0,., , , ; , , ., ,; .maxt tV x z v U t Tx z v x z v


    


= + + = 
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Thus, the choice probability can be expressed as ( mP  used to denote the choice 

probability of taking the m-th valid action m  ) 

 

( )
( ) ( )

( ) ( )
0

0

exp , , , ; , , , ;
 

exp , , ,
,

; ,
,

, ;
;

,
t

t t t t t t t

t

t t t t t t t

m t t

x z v U x z v
P v

x z v
x

z v
z

U x


 

 




 

 + 
=

 + 

 





 

The likelihood function for the entire sample is: 

 

( )
( ) ( )

( ) ( )
0

0 0

exp , , , ; , , , ;

exp , , , ; , , , ;
t

T
t t t t t t t

t t t t t t t t

x z v U x z v
L

x z v U x z v


 



 

 =

 + 
=

 + 



 


 
 

Since this is a finite horizon problem, ( ), , , ;t t t tU x z v   can be solved by 

backwards iteration in each step when finding the maximum likelihood estimator by 

iteration.  We iterate backwards from the terminal condition ( ), , , ; 0TTT TU x z v =  

For the bio state variables (fly_m_discrete, fly_f_discrete, larva_discrete) , I 

estimate their transition density non-parametrically using empirical averages as a start.  

In particular, the distribution of 
1 1 1t t t(fly_m_discrete , fly_f_discrete , larva_discrete )+ + +

next period depends on 
t t t(fly_m_discrete , fly_f_discrete , larva_discrete ) this period 

and on the action chosen this period. Later I may use a (possibly empirically estimated) 

population growth model for SWD in place of this non-parametric transition density. 

To magnify the different influences of interval length that are greater than the 

maximum days of activity of the insecticides on the bio state variables, since we believe 

that the infestation risk will increase if the crops are no longer effectively protected by 

the insecticides, I estimate 2 separate transition densities, M_under  for when 

int_ins max_active , and M_over  for when int_ins max_active  which includes the 

case when we have not sprayed yet this season. 

 

4.1.2. Estimating Parameters via Finite Horizon DP Nested in MLE 
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To estimate the coefficients in the per-period payoff function, we will use MLE 

with finite horizon dynamic programming (DP) problem nested in the likelihood 

function 

( )
( ) ( )

( ) ( )
0

0 0

exp , , , ; , , , ;

exp , , , ; , , , ;
t

T
t t t t t t t

t t t t t t t t

x z v U x z v
L

x z v U x z v


 



 

 =

 + 
=

 + 



 


 
. 

This can help to deal with the endogeneity caused by simultaneous equation 

problem between the action variables and the biological state variables. To be more 

specific, the actions the growers take are based on what they observe by monitoring the 

adult flies and the larva. However, the monitoring data, which are the biological state 

variables, are simultaneously influenced by the actions taken by the growers. Therefore, 

there will be two simultaneous equations with correlated error terms. To solve this 

problem, we introduce the non-parametric estimation of the transition density and the 

structural model framework. That is to embed the finite horizon sequence problem 

estimated by backward iteration demonstrated above into the MLE method.  

 

4.1.3. Estimating Standard Errors by Analytical Derivation 

Since there are only two samples in the MI 2016 data, we cannot really calculate 

the standard error with bootstrapping. Thus, we choose to calculate the variance matrix 

analytically for 2016 model. For the analytical derivation, please refer to Appendix I. 

 

4.2.Estimation Approach for 2018 Model 

4.2.1. Estimating Coefficients Using EM Algorithm 

To incorporate the unobserved heterogeneity of susceptibility to SWD, we adopt 

the Expectation Maximization algorithm (EM algorithm)  to estimate parameters   as 

well as the probability of being in unobserved high susceptibility state, vP . 
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Denote the entire vector of observations of actions and states, respectively, over 

all days for farm-year combination  1,2, ,n N   as n  and ,nt ntx z , nvq  is defined as 

the conditional probability that farm n is in unobserved state v: 

 
Pr( | , , ; , , )nv n n n mvq v x z P P= 

 

1) Start with an initial guess for the first iteration 
( ) ( ) ( )1 1 1

, , mvP P . 

2) In each m-th iteration, run through the following E-step and M-step: 

E-step: Calculate conditional probability nvq  of each observation being in 

unobserved state. 

Step 1: update nvq . 

Form likelihood for grower-time observation: 

 

( ) ( )( )
( ) ( )

( ) ( )

( ) ( )

0

( ) ( )

0

exp , , , ; , , , ;
, , ; ,

exp , , , ; , , , ;
t

k k

nt nt nt nt nt nt nt

nt nt nt k k

nt nt nt nt

m

nt nt nt

k k
x z v U x z v

l x z v P
x z v U x z v



 




 

  +
 =
 +
 

 


 
 

From Bayes’ Rule, update nvq : 

 

( )

( ) ( ) ( )( )
( ) ( ) ( )( )

v 01

1

v'0 0

P , , ; ,

P , , ; ,

T

nt nt nttk

nv T
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m
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m

l x z v P
q

l x z v P






=+

= =

=




 




 

Step 2: update vP . 

 

( ) ( )1 1

v

1

1
P

N
k k

nv

n

q
N

+ +

=

= 
 

Step 3: update ( ), , ;mP x z v   

 

( ) ( ) ( )( )1 ( ), , , , ;= ,
k k

nt nt nt n nt m

k

m m tP x z v l x z v P 
+

= 
 

 

M-step: Treat unobserved state as observed, using conditional probability nvq  of 

unobserved state as weights. 

Step 4: Taking 
( )1k

nvq
+

 and 
( ) ( )1

, ,
k

nt nm tP x z v
+

 as given, solve for 
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 . 
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Iterate through step 1-4, i.e., iterate through E-step and M-step until convergence 

to get the estimation of the parameters and probabilities. 

 

4.2.2. Estimating Standard Errors via Bootstrapping 

We will estimate standard errors of the parameters   using a bootstrap. Grower-

years are randomly drawn from the data set with replacement to generate 100 

independent panels each with the same number of grower-years as in the original data 

set. The structural model is run on each of the panels. The standard errors are then 

formed by taking the standard deviation of the estimates from each of the random 

samples.  
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CHAPTER 5 

RESULTS 

 

Table 8 presents our preliminary results for the parameter estimates for the 2016 

model. The results already bring us some insights in the optimal SWD management 

strategy in the IPM program. Later with more thoroughly exploration of data following 

the empirical approaches developed in the previous chapters, we will be able to establish 

a framework assisting in generation of most beneficial decisions automatically. 

As illustrated in Table 8, 1  is negative, which implies that when applying the 

same insecticide as last application, the utility will be higher than that when doing 

insecticide rotation. This may because that the growers prefer using the same insecticide 

and may not be aware of or care about the potential for insecticide resistance that may 

result from using the same insecticide over and over again. 

2  is negative, but 3  is positive. We may expect the interval variable of adult 

fly monitoring to behave similar to the that of larva monitoring, but here we detect a 

discrepancy. This may due to the different purpose of doing these two different kinds 

of monitoring in IPM. As mentioned above, the growers or extension educators mostly 

start adult fly monitoring several weeks before the larva monitoring to detect a early 

alarm for SWD infestation. On the other hand, the larva monitoring results will be 

directly and closely related whether the fruit is contaminated or not. Thus, the growers 

will abandon fly monitoring in later season, and totally rely on the larva monitoring. So, 

it is reasonable to have a positive 3 , which means smaller intervals between larva 

monitoring will ensure lower risk, thus brings higher utility. 

4  and 5  are both positive, which suggests that, as expected, a longer interval 

since the last spray, relative to the maximum number days the last insecticide sprayed 

is effective, increases the risk and lowers utility.  
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6  and 9  are all positive, which is the same direction as we expected. What’s 

more, comparing them with each other, we could find that the growers consider the 

female adult observations more seriously than the male adult observations. This is 

intuitive, since only female flies are able to lay eggs into the ripening fruits, which is 

the main reason of the contamination. Additionally, the results also imply that the 

growers consider it more significant when they start to observe some female flies (when 

1fly_f_discrete = ), which coincides with the purpose of maintaining adult fly trapping. 

The only conflict with our intuition is that the sign of the coefficient on larva 

monitoring is negative. One possible explanation can be that once the growers detect 

large number of larvae in the sampling fruits, they regard it as a signal of serious 

contamination, and will no longer invest any more money or energy to that plot. This is 

partially reasonable, since the processors indicate that they will not purchase any fresh 

blueberries from the grower once they detect any larvae in the commodity from that 

grower. 

 

Table 8 Preliminary Results for 2016 Model 

Coefficients Estimates 

      

Theta(1) same insecticide as last application -5.262 

Theta(2) int_mon_adu_discrete -6.126 

Theta(3) int_mon_lar_discrete 6.122 

Theta(4) int_ins_ratio if [int_ins_ratio <1] 0.068 

Theta(5) int_ins_ratio if [int_ins_ratio>=1] 0.001 

Theta(6) [fly_m_discrete =1] (some) 0.118 

Theta(7) [fly_m_discrete =2] (many) 5.819 

Theta(8) [fly_f _discrete =1] (some) 8.453 

Theta(9) [fly_f_discrete =2] (many) 5.819 

Theta(10) [lar _discrete = 1] (high) -3.074 

Theta(11) dummy for grower 1 103.61 

Theta(12) dummy for grower 2 46.86 

      

log likelihood -1660.22 
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CHAPTER 6 

CONCLUSION 

 

For my Masters thesis, I analyze the management of Spotted Wing Drosophila 

(SWD) in Michigan blueberry using a dynamic structural econometric model.  The 

Spotted Wing Drosophila (SWD) is a vinegar fly of East Asian origin that can cause 

damage to many fruit crops. I develop a dynamic structural model to study the SWD 

management decisions of growers of Michigan highbush blueberry regarding fly and 

larva monitoring and insecticide application. I apply my dynamic structural econometric 

model to a detailed data set I have collected and constructed of daily decisions of 

blueberry growers in Michigan. 

Our research questions include the following. In the context of SWD 

management, what is the best timing strategy to apply insecticide and which insecticide 

to use conditional on the monitoring information? Do growers worry about the potential 

for developing insecticide resistance?  

In future work, we will use the structural model to determine whether the farmers 

are making dynamically optimal decisions or are discounting the future too much by 

changing different discount factor values and testing for the predictability of the model.  

We will use parameters estimated from our structural model to conduct counterfactual 

analysis. 

In an extension to our dynamic structural model, we will allow for unobserved 

heterogeneity, which enables us to estimate the distribution of unobserved susceptibility 

as well as the effects of varietal susceptibility on payoffs. 
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APPENDIX I ANALYTICAL STANDARD ERROR DERIVATION 

 

For an MLE estimator, the variance of the vector theta is given by the inverse 

of the information matrix, where the information matrix is the negative of the expected 

value of the Hessian and the Hessian is the matrix of the second derivatives of the log 

likelihood with respect to the parameters. By getting the Hessian as below, we can 

finally calculate the standard error matrix analytically. 

Define the continuation value to be  
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And any derivative taken with respect to 0 ( )
 greater than the first order will 

be 0. 
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0 0

exp , , ; , , ;

exp , , ; , , ; , , ; , , ;

exp , , ; , , ; , , ; , ,

t t t t t t t

i j

t t t t t t t t t t t t t t

j i

t t t t t t t t t t t t t

i

x z U x z

x z U x z x z U x z

x z U x z x z U x z

 
 

   



 

  









 









 +  

  
   = + +      


 = + +  

 

   

   ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

2

0 0

0 0

; , , ; , , ;

exp , , ; , , ; , , ; , , ;

exp , , ; , , ; , , ; , , ;

t t t t t t t t

j

t t t t t t t t t t t t t t

i j

t t t t t t t t t t t t t t

i

x z U x z

x z U x z x z U x z

x z U x z x z U x z

 


   





 

   

  



   



   + +   


   + +    


   = + +  

  

   

    ( ) ( )

( ) ( ) ( )

0

2

0

, , ; , , ;

exp , , ; , , ; , , ;

t t t t t t t

j

t t t t t t t t t t t

i j

x z U x z

x z U x z U x z

 


 

 

  
 


 + +  


   +    

 

  

 

(10) 
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( ) ( ) ( )
1, 0 1 1 111 1 1Let , , ; , , ; , , ; | .

tm m tt m t t t t x t t t tU x z x z E U x z x   
++ + + + + ++
 = +    

 

For t = T,  

( ), , ; =0TT T TU x z 
 

For t = T-1,  

( ) ( ) ( )

( )( )

1

_

0 1 1 1 1 1 1

1

_

0 1 1

1

1, , ; log exp , , ; , , ; | | , ,

=E log exp , , ; | , ,

t

num acti

m t

on

t t t t t t x t t t t t t t

m

num action

t t t t t

m

m

U x z E x z E U x z x x z

x z x z

   

 

 



++ + + + + +

=

+

+

+

=

  
  = +    

  

  
  

  





  



 

( ) ( )

( ) ( )

( )

1

1

_

0 1 1

1

_

0 1 1 0 1 1

1

_

0 1 1

1

, , ; log exp , , ;

exp , , ; , , ;

exp , , ;

t

t

m

m

m

num action

t t t t x t t

mi i

num action

t t t t

i

x num action

m

t t

n

n

U x z E x z

x z x z

E

x z


 

 




 

 



+

+

+ +

=

+ + + +

=

+ +

=

    
 =        

 
     =

  







 

 



 
 
 
 
 
 
 

 
(11) 

For t < T-1,  

( ) ( ) ( )
1 1

1

1

_

0 1 1 1 1 1, , ; log exp , , ; , , ;
t t

n

t

um actio

m

n

t t t t x t t x t t t t

m

U x z E x z E U x z x   
+ ++ + + + + +

=

     = +       
  

 

( ) ( ) ( )

( ) ( )

1 1

1

1

_

0 1 1 1 1 1

1

0 1

1

11 1 1 1

, , ; log exp , , ; , , ;

exp , , ; , , ; |

t t

t

t

num action

t t t t x t t x t t t t

mi i

m t t x t t t t

m i

m t

t

x

U x z E x z E U x z x

x z E U x z x

E

 
 




  

 

+ +

+

+

+ + + + +

=

+ + + + +

=

+

+

      = +        


  +   

=

  

 

( ) ( )

( ) ( ) ( )

1

1 1

1

_

1

_

0 1 1 1 1 1

1

0 1 1

1

11 1 1 0

exp , , ; , , ;

exp , , ; , , ; | , , ;

t

t t

t

num action

num action

t t x t t t t

n

t

n t

m t t x t t t t t xt

i

m

x

x z E U x z x

x z E U x z x x z E

E

 

   








 

+

+ +

+

+ + + + +

=

+ + + +

+

+ +

 
 
 
 
   +     

 
  + +    

=



  

   ( )

( ) ( )

( ) ( )

1

1

1

1

1

1

_

1 1 1

_

0 1 1 1 1 1

1

, 0 1 1

, , ; |

exp , , ; , , ;

exp , , ;

t

t

t

num action

t t t t

m i

num action

t t x t t t t

n

t m t t x

i

t

m

x

n t

U x z x

x z E U x z x

U x z E

E




 

 




+

+

+

++ + +

=

+ + + + +

=

+

+ +

     
    
     
 
   +    
 

 
+

 
=







 

 ( )

( )

1

_

1 1 1

1

_

,

1

, , ; |

exp

num action

t t t t

m i

num action

n

t

t

n

U x z x

U


+ + + +

=

=

     
    
     
 
 
 
 







 

(12) 

So we can get  

( ), , ;t t t t

i

U x z







  

by backward iteration, and then plug it into the previous functions. 
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Similarly, we can get  

( )
2

, , ;t t t t

i j

U x z
 




 


  

by backward iteration, and then plug it into the previous functions. 

For t = T-1,  

( )
( ) ( )

( )

( )

1

1

_

0 1 1 0 1 12
1

_

0 1 1

1

0 1 1 0

exp , , ; , , ;

, , ;

exp , , ;

exp , , ; ,

t

t

num action

t t t tm

m i

t t t t x num action

i j j

t

m

n

m

t t

n

t

j i

x

m

x z x z

U x z E

x z

x z x

E

  








  


  
 

+

+

+ + + +

=

+ +

=

+ +

  
        =  

      
 

 
   

=





 





 ( )

( )

( ) ( ) ( )

_

1 1

1

_

0 1 1

1

_ _

0 1 1 0 1 1 0 1 1

1 1

0 1 1

, ;

exp , , ;

exp , , ; , , ; exp , , ;

exp , ,

num action

t t

m

num action

t t

n

num action num action

t t t t t t

m ni j

t

n

m

t

m n

n

z

x z

x z x z x z

x z



  









 



+ +

=

+ +

=

+ + + + + +

= =

+ +

 
 
 

  

  
         

−





 





  

( )

( ) ( ) ( )

( )

1

2
_

1

_

0 1 1 0 1 1 0 1 1

1

_

0 1 1

1

0

;

exp , , ; , , ; , , ;

exp , , ;

exp

t

m m m

n

m

num action

n

num action

t t t t t t

m j i

num action

t t

n

x

x z x z x z

x z

E


  







 





+

=

+ + + + + +

=

+ +

=

 
 
 
 
 
 
 
 
 
 

  
    

  

   
       

  

= +









  



( ) ( )

( )

( ) ( ) ( )

_ 2

1 1 0 1 1

1

_

0 1 1

1

0 1 1 0 1 1 0 1 1 0 1

, , ; , , ;

exp , , ;

exp , , ; , , ; exp , , ; ,

num action

t t t t

m i j

m

num action

t t

n

t t t t t t t

i

m

n

m

j

n n

x z x z

x z

x z x z x z x






 



   
 

   

+ + + +

=

+ +

=

+ + + + + + +

  
       

  

  
         

−





 



   ( )

( )

( ) ( )

1

_ _

1

1 1

2
_

0 1 1

1

0 1 1 0 1 1 0

, ;

exp , , ;

exp , , ; , , ; ,

t

num action num action

t

m n

num action

t t

n

t t t t t

j i

n

m

x

m m

z

x z

x z x z x

E



  
 



  

+

+

= =

+ +

=

+ + + +

  
 
 



 
 
 
 
 
 
 


  
 
 
 
 
 
 
 
  
     
   

 
 



   
=


 







  ( )

( )

( ) ( ) ( ) ( )

1

_

1 1

1

_

0 1 1

1

0 1 1 0 1 1 0 1 1 0 1 1

, ;

exp , , ;

exp , , ; , , ; exp , , ; , , ;

t

n

m n

num action

t

m

num action

t t

n

t t t t t t t t

j

n

i

x

m

z

x z

x z x z x z x z

E



 



    
 

+

+ +

=

+ +

=

+ + + + + + + +

   
  

   
 
  



 
 

  
 





       
−









   

( )

_ _

1 1

2
_

0 1 1

1

exp , , ;

num action num action

m n

num acti n

tn

o

t

n

x z 

= =

+ +

=






 
 
 
 

  
   

 






 

 

 

(13) 
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For t < T-1,  

( )

( ) ( ) ( )

( )

( )

1

1

1

_

, 0 1 1 1 1 1
2

1

_

,

1

, 0

1exp , , ; , , ; |

, , ;

exp

exp ,

t

t

t

num action

t m t t x t t t t

m i i

t t t t x num action

i j j
t n

n

t m

j i

x

m t

m

U x z E U x z x

U x z E

U

U x

E

 
 

 



 










+

+

+

++ + + + +

=

=

      
+    

        =  
   

 
 

 

 

=





 



( ) ( )

( )

( ) ( ) ( ) ( )

1

1

_

1 1 1 1 1

1

_

,

1

_

, , 0 1 1 1

1

1

1

1 1

, ; , , ; |

exp

exp exp , , ; , , ; |

t

t

num action

t t x t t t t

m i

num action

t n

n

num action

t n t t

t

mm t t x t tt t

n j i i

z E U x z x

U

U U x z E U x z x




 
  



 

+

+

+ + + + +

=

=

+ + + + +

+

+

=

    
+   

    

  
+

  
−







 

 

( )

( ) ( ) ( )
1

1

_

1

2
_

,

1

_

1, 0 1 1 1 1 1

1

exp

exp , , ; , , ; |

=

t

t

num action

m

num action

t n

n

num

t m t t x t t t t

m j i

m

x

t

i

U

U x z E U x z x

E

  
  +

+

=

=

+ + +

=

++ +

 
 
 
 
 
  
 

    
    

     
  
  
   

      
+   

      





 

( )

( ) ( ) ( ) ( )

( )

( ) ( )
1

1

_

,

1

_ _

, , , ,

1 1

2
_

,

1

, 0 1 1 1

exp
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(14) 

Hence, plug (8)-(14) into (7), and we will get the Hessian. 


